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Theory space of electroweak charged dark matter

a. model, predictive (<12)
b. vanilla EFTs, inclusive (12)
c. predictive and inclusive?
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universality of heavy particle interactions: 
hydrogen spectroscopy (NRQED), Isgur-
Wise function (HQET)

LUV → LEW =
∑

i

ciOi

(for direct detection)



Compute the direct detection cross section for this 
universal point using heavy particle effective theory.
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...flows to a unique point in the heavy mass limit.
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neutralino
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mW !M(               )

ci = ci,0 + ci,1
mW

M
+ . . .
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Universality/Simplicity
-minimal model input
-Standard Model anatomy: Higgs,lattice

Viable phenomenology
-bounds pushed by LHC null results
-relic density

Heavy WIMP limit is interesting.
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UV theory: don’t know, don’t care (mostly)
Anatomy of direct detection calculations

M

≈
mW

mb

mc

mN

One or two heavy electroweak multiplets (HPET)
heavy particle formalism

Complete weak scale matching
careful with renormalization, new integral basis

QCD anatomy of direct detection.} resum large logs, theoretical uncertainty

Matrix elements}
σ(SM) +O(mW /M, mb/Mw,Λ2

QCD/m2
c)

impact of lattice improvements



What is heavy particle effective theory?
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Obtain useful EFTs from full theory
- introduce field redefinitions
- use strategy of regions

QCD SCET

HQET

pµ = Enµ + . . .

pµ = Mvµ + . . .

Construct EFTs from scratch?
- full theory may be unknown (WIMPs) or non-existent (proton)



Need to know symmetries and building blocks

(there is a fixed time-like vector v)
Obscured Lorentz symmetry         obscured field representations
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- Match amplitudes or Poincare generators from full theory

appeal to nonperturbative (e.g. lattice) methods, or to experimental measurements. This
section relates the matching conditions in the one-fermion sector to standard form factors and
two-photon matrix elements of the nucleon.

4.1 One-photon matching

Diagrams for 1-Photon and 2-Photon Scattering

Gabriel Lee

December 12, 2012

p

q

p′ = p

q

p′

Figure 1: Diagrammatic representation of tree-level matching for the one-photon
amplitude in the full theory and in NRQED. The black dot in the dia-
gram on the right-hand side represents insertions of NRQED one-photon
operators.
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Figure 1: Tree level matching of the one-photon amplitude in the full theory and NRQED.
The black dot in the diagram on the right-hand side represents single-photon NRQED vertices.

Consider first the operators contributing to the one-photon matrix element of the nucleon.
The matching is performed in terms of standard invariant form factors,

〈N(p′)|Jem
µ |N(p)〉 = u(p′)Γµ(q)u(p) , Γµ(q) ≡ γµF

N
1 (q2) +

iσµν

2MN
FN
2 (q2)qν , (14)

where q = p′ − p and N denotes a proton or neutron; we suppress the superscript N in the
following. Equating the effective theory with the full theory3, we find (cf. Fig. 1)

cF = F̄1 + F̄2 ≡ Z + aN +O(α) ,

cD = F̄1 + 2F̄2 + 8F̄ ′
1 ≡ Z +

4

3
M2(rNE )

2 +O(α) ,

cW1 = F̄1 +
1

2
F̄2 + 4F̄ ′

1 + 4F̄ ′
2 ,

cX3 =
1

8
F̄ ′
1 +

1

4
F̄ ′
2 +

1

2
F̄ ′′
1 , (15)

where Z denotes the electric charge, aN is the anomalous magnetic moment of the nucleon,
and rNE is the nucleon charge radius. We have introduced dimensionless barred quantities to
denote derivatives with respect to q2/M2 at q2 = 0: F̄1 ≡ F1(0) = Z, F̄2 ≡ F2(0) = aN ,
F̄ ′
i ≡ M2F ′

i (0), etc. The new quantity F̄ ′′
1 appears at 1/M4. Expressions for other Wilson

coefficients through 1/M3 in terms of form factors can be found using (7). At 1/M4, we also
find

cX1 =
5

128
F̄1 +

1

32
F̄2 +

1

4
F̄ ′
1 ,

3 The nonrelativistic normalization of states in NRQED is obtained using ū(p)u(p) = M/Ep in (14).
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cX2 =
3

64
F̄1 +

1

16
F̄2 ,

cX5 =
3

32
F̄1 +

1

8
F̄2 ,

cX6 = − 3

32
F̄1 −

1

8
F̄2 −

1

4
F̄ ′
1 −

1

2
F̄ ′
2 , (16)

and it is readily verified that these expressions satisfy the constraints (9). In the presence
of radiative corrections, the form factors on the right hand sides of (15) and (16) should be
interpreted in an appropriate infrared regularization scheme; alternatively, the matching may
be performed with infrared finite observables. The corresponding infrared subtractions and
ultraviolet renormalizations must be performed to obtain the Wilson coefficients including
radiative corrections.4

4.2 Two-photon matching
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Figure 2: Diagrammatic representation of the matching of the amplitude for Comp-
ton scattering obtained in the full theory and NRQED, to leading order
in e. The black vertices in the diagrams on the right-hand side represent
insertions of NRQED 1-photon operators.
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Figure 3: Feynman diagrams for two-photon exchange with momentum labels.
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Figure 2: Tree-level matching of the Compton scattering amplitude in the full theory and
NRQED. The black vertices in the diagrams on the right-hand side represent NRQED vertices.

The Compton scattering process, γ∗(q)N(p) → γ(q′)N(p′), with one virtual and one real
photon is sufficient to determine the remaining coefficients in the 1/M4 NRQED lagrangian.
Consider the low-energy expansion of the virtual Compton scattering amplitude as depicted
in Fig. 2. Let us define a conventional separation

Mµν ≡ Mµν
Born +Mµν

non−Born , (17)

by declaring that “Born” terms are defined by the “Sticking In Form Factors” (SIFF) pre-
scription using the form factors of (14). Explicitly,

Mµν
Born ≡ −g2ū(p′)

{
Γν(−q′)

1

p/ + q/ −M
Γµ(q) + Γµ(q)

1

p/ − q/ ′ −M
Γν(−q′)

}
u(p) . (18)

4The expressions on the right hand side of (15) and (16) correspond to those referred to as cQED
i in [9].

The renormalization procedure in dimensional regularization is described in [10].
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32cX4 = −1− 4cF (1− cF ) + 4cD − 2cA2

cF = 1 + F̄2

cS = 2cF − 1
cS = 1 + 2F̄2 32cX4 = 3 + 4F̄2 − 64f̄2,0

cD = 1 + 2F̄2 + 8F̄ ′
1 cA2 = 4F̄2 + 2F̄ 2

2 + 16F̄ ′
1 + 32f̄2,0

- Reparameterization Invariance (incorrect ansatz)



Need to know symmetries and building blocks

Identified Lorentz symmetry         identified field representations
representation that keeps v fixed
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Heinonen, Hill, MS [1208.0601]

- Boosts act as rotations (method of induced representations)

- Equivalent: non-linearly realized subgroup

!k = !rh− t!p +
i!Σ× !D

M +
√

M2 − !D2
+O(g)

!k = !rh− t!p + iΣusually:

- Little group for massive particles



Need to know symmetries and building blocks

self-conjugacy leads to a parity:
φv(x)→ Cφ∗

v(x), vµ → −vµ

little group for massive particles ~ SO(3): spin = 0,1/2,1,...

embed in Dirac spinor-vectors with constraints

vµ1φ
µ1...µn
v = 0, /vφµ1...µn

v = φµ1...µn
v , γµ1φ

µ1...µn
v = 0

10



(φv, vµ, Dµ, γµ, ...)

Write everything possible with building blocks

Now apply the QFT recipe

consistent with symmetries.

Lφ = φ∗v

{
iv · D − c1

D2
⊥

2M
+ c2

D4
⊥

8M3
+ g2cD

vα[Dβ
⊥, Wαβ ]

8M2
+ ig2cM

{Dα
⊥, [Dβ

⊥, Wαβ ]}
16M3

+ g2
2cA1

WαβWαβ

16M3
+ g2

2cA2
vαvβWµαWµβ

16M3
+ g2

2cA3
Tr(WαβWαβ)

16M3

+ g2
2cA4

vαvβTr(WµαWµβ)
16M3

+ g2
2c′A1

εµνρσWµνWρσ

16M3
+ g2

2c′A2
εµνρσvαvµWναWρσ

16M3

+ g2
2c′A3

εµνρσTr(WµνWρσ)
16M3

+ g2
2c′A4

εµνρσvαvµTr(WναWρσ)
16M3

+ . . .

}
φv

Dµ
⊥ = Dµ − vµv · D

e.g. real scalar triplet with Y=0.

Boosts: c1 = c2 = 1, cM = cD
11



Real scalar parity enforced, e.g. omitted
cQ = cXBoosts:

Lφ,SM = φ∗
v

{
cH

H†H

M
+ · · · + cQ

taJQ̄Lτa/vQL

M2
+ cX

iQ̄LτaγµQL{taJ , Dµ}
2M3

+ cDQ
Q̄L/viv · DQL

M3

+ cDu
ūR/viv · DuR

M3
+ cDd

d̄R/viv · DdR

M3
+ cHd

Q̄LHdR + h.c.

M3
+ cHu

Q̄LH̃uR + h.c.

M3

+ g2
3c(G)

A1

GA αβGA
αβ

16M3
+ g2

3c(G)
A2

vαvβGA µαGA
µβ

16M3
+ g2

3c(G) ′
A1

εµνρσGA
µνGA

ρσ

16M3
+ g2

3c(G) ′
A2

εµνρσvαvµGA
ναGA

ρσ

16M3

+ . . .

}
φv

φ∗
vQ̄L/vQLφv

M2
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Hill, Lee, Paz, MS [1212.4508]

Other applications:
- NRQED up to 1/M4 , RPI fails at this order
- Four-fermion operators for low-energy lepton-nucleon 
scattering

- Four-fermion operators for DM-nucleon scattering (cf. 
Galilean invariant basis of Fitzpatrick et al. [1203.3542])

(to do)



L = h̄ [iv ·D − δm− f(H)]h +O(1/M)
spin, mass,...
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heavy, self-conjugate electroweak multiplet(s) of arbitrary spinM

Focus on universal limit

≈
electroweak charges

k
hλi hλi = i

v·k+i0δij

hλ0
hλ′

0

Z

µ

= g2
2cW

vµ

hλ′
0 hλ0

Z

µ

= − g2
2cW

vµ

hλ0
hλ+

W+

µ

=

hλ+ hλ0

W−

µ

= ig2
2 vµ

hλ0
hλ−

W−

µ

=

hλ− hλ0

W+

µ

= − ig2
2 vµ

Figure 2: Feynman rules involving lightest heavy WIMP hλ0 for heavy higgsino coupling to Standard
Model particles.

we find in the h = (hλ0 , hλ+ , hλ−) basis,

L = h̄

[
iv · ∂ + eQv ·A+

g

cW
v · Z(T 3 − s2WQ) +

g√
2
(v ·W+T+ + v ·W−T−)

]
h , (8)

where T± = T 1 ± iT 2 and Q = T 3 + Y , with

Y = 0 , T 3 = diag(0, 1,−1) , T+ =




0 0

√
2

−
√
2 0 0

0 0 0



 , T− =




0 −

√
2 0

0 0 0√
2 0 0



 . (9)

The Feynman rules for interactions involving the electrically neutral field hλ0 are displayed in Fig. 1.

2.1.2 Pure higgsino

Consider now a higgsino-like SM extension, i.e., a Dirac fermion in the (2, 1/2) representation of
SU(2)L × U(1)Y :

L = LSM + ψ̄(iD/ −M)ψ + . . . , (10)

with iDµ = i∂µ+g1Y Bµ+g2W ata, where ta = τa/2 with τa the Pauli isospin matrices, and Y = 1/2.
Anticipating a perturbation that lifts one of the Majorana mass eigenstates (the fields λ(1) and λ(2)

below will denote the lighter and the heavier states under this perturbation, respectively), let us
introduce

λ(1) =
1√
2
(ψ + ψc) , λ(2) =

i√
2
(ψ − ψc) , (11)

collect the fields λ(i) into a column vector,

λ =

(
λ(1)

λ(2)

)
, (12)

and pass to the heavy-particle limit, whose tree-level implementation is given by

λ =
√
2e−i(M−δM)v·x(h+H) . (13)

4

residual mass matrix

M + δm = (M,M ′, M ′, M ′, M ′)

mixing through H

2.2 Pure doublet

Let hψ and hψc be heavy-particle doublets in the (2, 1/2) and (2̄,−1/2) representations of SU(2)W ×
U(1)Y . Anticipating mass perturbations that cause the mass eigenstates to be self-conjugate fields,
let us introduce the combinations

hD1 =
hψ + hψc
√

2
=

(
h1

h0

)
, hD2 =

i(hψ − hψc)√
2

=

(
h2

h′0

)
, (6)

and collect them in a column vector, h = (hD1 , hD2). Neglecting the above-mentioned mass per-
turbation, the tree-level mass eigenstates are degenerate, and we take δm = 4. The heavy-particle
lagrangian for h is given by (1), with f(H) = 0, and gauge couplings

ta =

(
τa−τaT

4
−i(τa+τaT )

4
i(τa+τaT )

4
τa−τaT

4

)
, Y =

i

2

(
0 −

0

)
, (7)

where τa are the Pauli matrices. We may obtain the charge eigenstates by




h1

h0

h2

h′0




≡





0 0 1√
2

1√
2

1 0 0 0
0 0 i√

2
− i√

2

0 1 0 0









h0

h′0
h+

h−




. (8)

The lagrangian in the basis h = (h0, h0′ , h+, h−) is given by (2) with Q = diag( 2, 1,−1) and

T 3 =





0 i
2 0 0

− i
2 0 0 0

0 0 1
2 0

0 0 0 −1
2




, T+ =





0 0 0 − 1√
2

0 0 0 i√
2

1√
2
− i√

2
0 0

0 0 0 0




, T− =





0 0 1√
2

0

0 0 i√
2

0

0 0 0 0
− 1√

2
− i√

2
0 0




. (9)

The Feynman rules involving the lightest, electrically neutral field h0 ≡ χ are displayed in Fig. 6 in
Appendix A.

2.3 Mixed singlet-doublet

Let hS be a heavy, self-conjugate, SU(2)W singlet with Y = 0 and mass MS . Consider an admixture
of hS and the self-conjugate doublets hD1 and hD2 in (6), with mass MD. Let us collect the fields in
a column vector h = (hS , hD1 , hD2) = (hS , h1, h0, h2, h′0).

The renormalizable gauge-invariant interactions involving the Higgs field are

LHh̄h = −h̄S

[
yH† (hD1 − ihD2)√

2
+ y′HT (hD1 + ihD2)√

2

]
+ h.c. = −h̄f(H)h , (10)

where

f(H) =
a1√
2




0 H† + HT i(HT −H†)

H + H∗
2 2

i(H −H∗) 2 2



 +
a2√
2




0 −i(HT −H†) HT + H†

−i(H −H∗) 2 2

H + H∗
2 2



 .

(11)

3



L = h̄ [iv ·D − δm− f(H)]h +O(1/M)

electroweak charges

residual mass matrix

mixing through H

spin, mass,...
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- SU(2)W triplet, Y=0 i.e. wino-like

- parameter-free, beyond specification of ta and Y

δm = f(H) = 0Pure states

- self-conjugate combinations of SU(2)W 
doublets with Y=|1/2|, i.e. higgsino-like



L = h̄ [iv ·D − δm− f(H)]h +O(1/M)

electroweak charges

residual mass matrix

mixing through H

spin, mass,...

15

- singlet-doublet mixture i.e. bino-higgsino

- triplet-doublet mixture i.e. wino-higgsino

SUSY fixes kappa

∆ =( M −M ′)/2δm, f(H) = (∆, κ)Mixed states

- two-parameters, interplay between loop- and 
mass- suppression
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L = h̄ [iv ·D − δm− f(H)]h +O(1/M)

O(0)
1q = mq q̄q , O(0)

2 = (GA
µν)2 ,

O(2)µν
1q = q̄

(
γ{µiDν} − 1

d
gµνi /D

)
q , O(2)µν

2 = −GAµλGAν
λ +

1
d
gµν(GA

αβ)2

Lχ,SM =
1

m3
W

χ̄χ

{
∑

q

[
c(0)
1q O(0)

1q + c(2)
1q vµvνO(2)µν

1q

]
+ c(0)

2 O(0)
2 + c(2)

2 vµvνO(2)µν
2

}
match: integrate out t, W, Z, h, goldstones

Weak scale matching

µt

M

≈

Complete leading-order basis for self-conjugate WIMP, spin-
independent, low-velocity scattering (12 operators, closed under 
renormalization).

ci = ci,0 + ci,1
mW

M
+ . . .

(to do)



Weak-scale matching: pure case

17

+ + +

= c2 + c1

[
+

]
+ . . .

Figure 12: Matching condition onto gluon operators. The notation is as in Fig. 11.

We can decompose T into spin components

T = T (0) + T (2) + T (4) , (133)

where

T (0)
αβγδ = O(0)(gαγgβδ − gαδgβγ) ,

T (2)
αβγδ = gαγO(2)

βδ − gαδO
(2)
βγ + gβδO(2)

αγ − gβγO
(2)
αδ , (134)

and T (4) is not needed for the present analysis. The scalar and two-index symmetric tensors that we
can build from T are gαγgβδTαβγδ and gβδTαβγδ. Contracting (134) with gαγgβδ or vαvγgβδ gives the
proportionality constants,

O(0) =
1

d(d− 1)
gαγgβδTαβγδ =

1

d(d− 1)
(Ga

µν)
2 ,

O(2)
αγ =

1

d− 2
gβδ(Tαβγδ − T (0)

αβγδ) =
1

d− 2

[
gβδGa

αβG
a
γδ −

1

d
gαγ(G

a
µν)

2

]
. (135)

2.6 Gluon matching coefficients

For eventual insertion into the boson loop, we require

vµvνΠ
µν
(WW ) ≡

−ig2

4

1

2

[
O(0)I(0)(WW ) +O(2)αβI(2)(WW )αβ + . . .

]
, (136)

and similar decompositions for vµvνΠ
νµ
(ZZ)(L), vµΠ

µ
(Wφ±)(L), vµΠ

µ
(Zφ2)

(L), Π(φ±φ±)(L) andΠ(Wφ±)(L),

where the ellipsis denotes T (4) contributions that are irrelevant to our analysis.
Let us write each contribution schematically as

I =

∫
(dp)ND . (137)

For the denominators we have (p′ = p− L)

Da =
1

(p2 −m2
u)

4((p′)2 −m2
d)

32

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an effective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on φv or involving γ5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

Lφ0,SM =
1

m3
W

φ∗
vφv

{ ∑

q

[
c(0)
1q O(0)

1q + c(2)
1q vµvνO

(2)µν
1q

]
+ c(0)

2 O(0)
2 + c(2)

2 vµvνO
(2)µν
2

}
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µν)

2 ,

O(2)µν
1q = q̄

(
γ{µiDν} − 1

d
gµνiD/

)
q , O(2)µν

2 = −GAµλGAν
λ +

1

d
gµν(GA

αβ)2 . (20)

Here A{µBν} ≡ (AµBν + AνBµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 − 2ε the spacetime dimension. We use the background field method
for gluons in the effective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coefficients c(S)

2 through O(αs) and c(S)
1q through O(α0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ∼ mt ∼ mW ∼ mh are obtained from the diagrams in Fig. (1):

c(0)
1U(µt) = C

[
− 1

x2
h

]
, c(0)

1D(µt) = C
[
− 1

x2
h

− |VtD|2
xt

4(1 + xt)3

]
,

c(2)
1U(µt) = C

[
2

3

]
, c(2)

1D(µt) = C
[
2

3
− |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

]
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [πα2
2(µt)][J(J +

1)/2], xh ≡ mh/mW and xt ≡ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

previous computations: Essig [0710.1668]; Cirelli,Fornengo,Strumia [0512090];
Hisano, Ishiwata, Nagata, Takesako [1104.0228]

toolbox: infrared subtraction with dimreg, background 
field method in Fock-Schwinger gauge

spin-2 gluon matching is new

21

Background gluon fields and Fock-Schwinger gauge

iMWW
D =

∑

U

g42
16

|VUD|2 ūD(p)v/
[

J/(p,mW ,mU , 0) + p/J(mW ,mU , 0)
]

v/uD(p) . (107)

2.5 Background field method

Before considering the explicit matching onto gluon operators, let us first review the relevant back-
ground field formalism. The analysis is performed in dimensional regularization. In the following
Sec. 2.6 we proceed to apply the results to the evaluation of gluon matching coefficients relevant to
WIMP-nucleon scattering.

2.5.1 Quark loop

We require the following generalized polarization tensors,

Πνµ
(WW )(L) =

W

U

W
D

µ ν

=
∑

U,D

g22 |VUD|2

8
i

∫

ddx eiL·x〈T{D̄(x)γν(1− γ5)U(x)Ū (0)γµ(1− γ5)D(0)}〉 ,

Πνµ
(ZZ)(L) =

Z

q

Zq

µ ν

=
∑

q

g22
16c2W

i

∫

ddx eiL·x〈T{q̄(x)γν(c(q)V + c(q)A γ5)q(x)q̄(0)γ
µ(c(q)V + c(q)A γ5)q(0)}〉 ,

Πµ
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where U = u, c, t and D = d, s, t denote up- and down-type quarks respectively, while q = u, d, c, s, t, b
denotes an arbitrary quark flavor, with

c(U)
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8
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s2W , c(U)

A = −1 ,
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V = −1 +

4

3
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For each case we write
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ddx eiL·x〈T{q̄′(x)Γq(x)q̄(0)Γ′q′(0)}〉 = i(−1)

∫

ddx eiL·xTr
[

ΓiS(q)(x, 0)Γ′S(q′)(0, x)
]

= i

∫

ddp

(2π)d
Tr

[
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where

S(p) ≡
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ddx eip·xS(x, 0) , S̃(p) ≡
∫

ddx e−ip·xS(0, x) , (111)

and the superscript denotes the (mass eigenstate) quark flavor. Let us use the weak coupling expan-
sion,
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p/− q/−m

+ g2
∫

(dq1)(dq2)
i

p/−m
iA/(q1)

i

p/− q/1 −m
iA/(q2)

i

p/− q/1 − q/2 −m
+ . . . ,
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In Fock Schwinger gauge we have
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where the ellipsis denotes terms with derivatives acting on Ga
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The two-gluon amplitude for both insertions on the up-quark line is
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∂qρ

∂
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match to basis of 2-loop heavy-particle integrals (in general mixed case ~ integrals of 
elliptic integrals)
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Figure 12: Matching condition onto gluon operators. The notation is as in Fig. 11.

and similar decompositions for vµvνΠ
νµ
(ZZ)(L), vµΠ

µ
(Wφ±)(L), vµΠ

µ
(Zφ2)

(L), Π(φ±φ±)(L) andΠ(Wφ±)(L),

where the ellipsis denotes T (4) contributions that are irrelevant to our analysis.
Let us write each contribution schematically as

I =

∫

(dp)ND . (123)

For the denominators we have (p′ = p− L)

Da =
1

(p2 −m2
u)4((p′)2 −m2

d)

=
4!

3!

∫ 1

0
dx(1− x)3

[

x((p′)2 −m2
d) + (1− x)(p2 −m2

u)
]−5

=
4!

3!

∫ 1

0
dx(1− x)3

[

(p− xL)2 −∆
]−5

(124)

with
∆ = (1− x)m2

u + xm2
d − x(1− x)L2 − i0 . (125)

Similarly, with k′ = k + L after a change of integration variable k = p− L,

Db =
1

(k2 −m2
d)

4((k′)2 −m2
u)

=
4!

3!

∫ 1

0
dxx3

[

(k + (1− x)L)2 −∆
]−5

, (126)

and finally

Dc =
1

(p2 −m2
u)

2((p′)2 −m2
d)

2
= 3!

∫ 1

0
dxx(1 − x)

[

(p− xL)2 −∆
]−4

. (127)

For the numerators, we substitute the projections onto spin-0 and spin-2 gluon operators. After
shifting integration variables,

p = p̃+ xL , p′ = p− L = p̃− (1− x)L

31

Leading contributions to gluon operators arise from two-loop diagrams 



Weak-scale matching: mixed case
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-intermediate Higgs and goldstone bosons, e.g., two-
boson exchange 

- tree-level Higgs exchange

- one-boson exchange diagrams require 
renormalization

∼ g2κ2

√
κ2 + (∆/2mW )2

χ̄χh0

while for κ → 0 or |∆| → ∞ with ∆ < 0 we recover the wino limit,

∆c(0)1q =
g42

(4π)2−ε
πΓ(1 + ε)

{
−m−3−2ε

W

1

x2h
+O(ε)

}
. (105)

At the canonical reference point, κ = 0.5, ∆/mW = 5, we have

∆c(0)1q =
g42

(4π)2−ε
πΓ(1 + ε)m−3−2ε

W

[
− 0.0583 + 0.00195

∑

E

log
mE

mW
+ 0.00260

∑

U

log
mU

mW

+ 0.000650
∑

D

log
mD

mW

]
. (106)

2.4 Quark matching coefficients: two-boson exchange
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φW φW

U D

Figure 11: Matching condition for quark operators from two-boson exchange. Crossed diagrams and
time reversed diagrams are included but not shown explicitly. Here q represents an arbitrary quark
flavor, while U and D represent up-type and down-type quarks, respectively.

Let us now consider the contributions from two-boson exchange, as displayed in Fig. 11. We will
quote results for bino-higgsino and wino-higgsino mixtures, with the pure wino and pure higgsino
results giving by limiting values of κ and sinβ.

2.4.1 Bino-higgsino

The diagrams for two Z exchange yield (subleading mass corrections, proportional to mq/mZ , are
ignored, since no top quark appears)

iMZZ
q =

g42
64c4W

cos2
β

2
ūq(p)

[[
(c(q)V )2 + (c(q)A )2

]
v/
[
J/(p,mZ , 0, δ

(0)) + p/J(mZ , 0, δ
(0)
0 )

]
v/

+mqJ(mZ , 0, δ
(0))

[
(c(q)V )2 − (c(q)A )2

]]
uq(p) , (107)

where the integrals J and Jµ are defined in Appendix B, and

c(U)
V = 1− 8

3
s2W , c(D)

V = −1 +
4

3
s2W , c(U)

A = −1 , c(D)
A = 1 . (108)

25toolbox: on-shell renormalization scheme, new basis of heavy 
particle integrals with non-zero residual masses (relevant to 
low energy e-p scattering) Hill, Lee, Paz, MS [1212.4508]

(to do)
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Quark matching
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Figure 11: Matching condition for quark operators from two-boson exchange. Crossed diagrams are
not shown explicitly. q represents an arbitrary quark flavor, while U and D represent up-type and
down-type quarks, respectively.

where the integrals J and Jµ are defined in Appendix A, and

c(u)V = 1−
8

3
s2W , c(d)V = −1 +

4

3
s2W , c(u)A = −1 , c(d)A = 1 . (99)

The diagrams for two W exchange with external up-type quark yield (again, ignoring subleading
mass corrections, and using CKM unitarity)

iMWW
U =

g42
16

cos2
β

2
ūU (p)v/

[

J/(p,mW , 0, δ(0)) + p/J(mW , 0, δ(0))
]

v/uU (p) , (100)

while for external down-type quark we must account for top quark mass dependence

iMWW
D =

∑

U

g42
16

cos2
β

2
|VUD|2 ūD(p)v/

[

J/(p,mW ,mU , δ
(0)) + p/J(mW ,mU , δ

(0))
]

v/uD(p) . (101)

The diagrams with mixed Z and Goldstone exchange vanish when quark masses are neglected (again,
there is no top quark line for matching onto the five flavor theory), while for mixed W and Goldstone
exchange there is a cancellation between the four diagrams resulting in vanishing total,

iMWφ
q = iMZφ

q = 0 . (102)

For two Goldstone exchange, only diagrams with interior top quark contribute,

iMφφ
D =

g22a
2

4
sin2

β

2

m2
t

m2
W

|VtD|2 ūD(p)
[

(−2mD + p/)J(mW ,mt, δ
(0)) + J/(p,mW ,mt, δ

(0))
]

uD(p) .

(103)

The complete matching for two-boson is given by

Mq = MZZ
q +MWW

q +MWφ
q +MZφ

q +Mφφ
q . (104)
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+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an effective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on φv or involving γ5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

Lφ0,SM =
1

m3
W

φ(0)∗
v φ(0)

v

{∑

q

[
c(0)1q O

(0)
1q + c(2)1q vµvνO

(2)µν
1q

]
+ c(0)2 O(0)

2 + c(2)2 vµvνO
(2)µν
2

}
+ . . . ,

(19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µν)

2 ,

O(2)µν
1q = q̄

(
γ{µiDν} − 1

d
gµνiD/

)
q , O(2)µν

2 = −GAµλGAν
λ +

1

d
gµν(GA

αβ)
2 . (20)

Here A{µBν} ≡ (AµBν + AνBµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 − 2ε the spacetime dimension. We use the background field method
for gluons in the effective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coefficients c(S)2 through O(αs) and c(S)1q through O(α0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ∼ mt ∼ mW ∼ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
[
− 1

x2
h

]
, c(0)1D(µt) = C

[
− 1

x2
h

− |VtD|2
xt

4(1 + xt)3

]
,

c(2)1U(µt) = C
[
2

3

]
, c(2)1D(µt) = C

[
2

3
− |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

]
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [πα2
2(µt)][J(J +

1)/2], xh ≡ mh/mW and xt ≡ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.

6

h

Figure 10: Matching condition for quark operators from one-boson exchange.

2.3 Quark matching coefficients: one-boson exchange

Having performed the requisite renormalizatino of the higgs-DM vertex, let us proceed to compute
the matching coefficients from higgs boson exchange. The matching condition is pictured in Fig. 10.

The renormalized Higgs vertex is considered in other notes. Let us quote the results. The renor-
malization scheme defines renormalized values for A =

√

a21 + a22 and tan β
2 by the mass differences,

∆Mneutral = M(λ(+)
0 )−M(λ(−)

0 ) = Av
2

sinβ
= Av

(

tan
β

2
+ cot

β

2

)

,

δMcharged = M(λ+)−M(λ(−)
0 ) = Av tan

β

2
, (81)

allowing us to solve for A and tan β
2 ,

∆Mcharged(∆Mneutral −∆Mcharged) = A2v2 ,
∆Mneutral

∆Mcharged
= csc2

β

2
. (82)

In terms of these quantities, the three point function involving the higgs is as follows,

iM̂tree = iA sinβ ,

iM̂vertex,1 = g2

{

−
g22
8c3W

cos2
β

2
mZI1(δ

(0)
0 ,mZ) +

g2A

4c2W
sinβI2(δ

(0)
0 ,mZ)

+
A2

2
sin2

β

2

m2
h

mW
I1(δ

(0)
0 ,mZ) +

3A2

2

m2
h

mW

[

sin2 βI1(δ
(−)
0 ,mh) + cos2 βI1(δ

(+)
0 ,mh)

]

−
g22
2

cos2
β

2
mW I1(δ±,mW ) +

g2A

2
sinβI2(δ±,mW ) +A2 sin2

β

2

m2
h

mW
I1(δ±,mW )

}

,

iM̂vertex,2 = A3 sinβ
[

− sin2 βI4(δ
(−)
0 , δ(−)

0 ,mh) + cos2 βI4(δ
(+)
0 , δ(+)

0 ,mh)

− 2 cos2 βI4(δ
(−)
0 , δ(+)

0 ,mh)
]

,

iM̂δa = iA sinβ
δa

a
,

iM̂δv = iA sinβ
δv

v
,

iM̂δZ = −iA sinβδZ . (83)

The δa contribution is given by

Av
δa

a
= [Σ(0)]23 + cot

β

2
([Σ(0)]33 − [Σ(δ±)]44) . (84)
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an effective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on φv or involving γ5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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where we have chosen QCD operators of definite spin,
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Here A{µBν} ≡ (AµBν + AνBµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 − 2ε the spacetime dimension. We use the background field method
for gluons in the effective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coefficients c(S)2 through O(αs) and c(S)1q through O(α0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ∼ mt ∼ mW ∼ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
[
− 1

x2
h

]
, c(0)1D(µt) = C

[
− 1

x2
h

− |VtD|2
xt

4(1 + xt)3

]
,

c(2)1U(µt) = C
[
2

3

]
, c(2)1D(µt) = C

[
2

3
− |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

]
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [πα2
2(µt)][J(J +

1)/2], xh ≡ mh/mW and xt ≡ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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+

B0(0,m0,m1) =
1

ε
−

m2
0

m2
0 −m2

1

logm2
0 +

m2
1

m2
0 −m2

1

logm2
1 + 1 ,

B0(M,m, 0) =
1

ε
+ 2−

m2

M2
logm2 +

m2 −M2

M2
log(m2 −M2 − i0) ,

B0(M, 0, 0) =
1

ε
+ 2− log(−M2 − i0) ,

lim
λ→0

B0(m,m,λ) =
1

ε
+ 2− logm2 . (93)

In the present application, only the real parts of the integrals are relevant. For the derivative of the
integral,

B′
0(M,m,m) ≡

∂

∂p2
B0(M,m,m) = (4π)εΓ(1 + ε)

[

m2

M4

(

1

r
− r

)

log r −
1

M2

(

1 +
r2 + 1

r2 − 1
log r

)]

,

(94)
and we find the limits,

B′
0(0,m,m) =

1

6m2
,

B′
0(M, 0, 0) = −

1

M2
. (95)

Summing all contributions and including the remaining Higgs propagator,

iM = i
(

M̂tree + M̂vertex,1 + M̂vertex,2 + M̂δa + M̂δv + M̂δZ

) i

−m2
h

−ig2mq

2mW
ū(q)(p)u(q)(p) , (96)

from which we read off,

c(0)1q = −
g2mq

2m2
hmW

(

M̂tree + M̂vertex,1 + M̂vertex,2 + M̂δa + M̂δv + M̂δZ

)

. (97)

[Extend to wino-higgsino.]

2.4 Quark matching coefficients: two-boson exchange

Let us now consider the contributions from two-boson exchange, as displayed in Fig. 11. We will
quote results for bino-higgsino and wino-higgsino mixtures, with the pure wino and pure higgsino
results giving by limiting values of κ and sinβ.

2.4.1 Bino-higgsino

The diagrams for two Z exchange yield (subleading mass corrections, proportional to mq/mZ , are
ignored, since no top quark appears)

iMZZ
q =

g42
64c4W

cos2
β

2
ūq(p)

[

[

(c(q)V )2 + (c(q)A )2
]

v/
[

J/(p,mZ , 0, δ
(0)) + p/J(mZ , 0, δ

(0)
0 )

]

v/

+mqJ(mZ , 0, δ
(0))

[

(c(q)V )2 − (c(q)A )2
]

]

uq(p) , (98)
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Figure 11: Matching condition for quark operators from two-boson exchange. Crossed diagrams are
not shown explicitly. q represents an arbitrary quark flavor, while U and D represent up-type and
down-type quarks, respectively.

where the integrals J and Jµ are defined in Appendix A, and

c(u)V = 1−
8

3
s2W , c(d)V = −1 +

4

3
s2W , c(u)A = −1 , c(d)A = 1 . (99)

The diagrams for two W exchange with external up-type quark yield (again, ignoring subleading
mass corrections, and using CKM unitarity)

iMWW
U =

g42
16

cos2
β

2
ūU (p)v/

[

J/(p,mW , 0, δ(0)) + p/J(mW , 0, δ(0))
]

v/uU (p) , (100)

while for external down-type quark we must account for top quark mass dependence

iMWW
D =

∑

U

g42
16

cos2
β

2
|VUD|2 ūD(p)v/

[

J/(p,mW ,mU , δ
(0)) + p/J(mW ,mU , δ

(0))
]

v/uD(p) . (101)

The diagrams with mixed Z and Goldstone exchange vanish when quark masses are neglected (again,
there is no top quark line for matching onto the five flavor theory), while for mixed W and Goldstone
exchange there is a cancellation between the four diagrams resulting in vanishing total,

iMWφ
q = iMZφ

q = 0 . (102)

For two Goldstone exchange, only diagrams with interior top quark contribute,

iMφφ
D =

g22a
2

4
sin2

β

2

m2
t

m2
W

|VtD|2 ūD(p)
[

(−2mD + p/)J(mW ,mt, δ
(0)) + J/(p,mW ,mt, δ

(0))
]

uD(p) .

(103)

The complete matching for two-boson is given by

Mq = MZZ
q +MWW

q +MWφ
q +MZφ

q +Mφφ
q . (104)
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A Box integrals

The necessary integrals are

J(mV ,M, δ) =

∫

(dL)

[

1

−v · L− δ
+

1

v · L− δ

]

1

(L2 −m2
V )

2

1

L2 −M2
,

Jµ(p,mV ,M, δ) =

∫

(dL)

[

1

−v · L− δ
+

1

v · L− δ

]

1

(L2 −m2
V )

2

1

L2 + 2L · p−M2
Lµ

= v · pvµJ1(mV ,M, δ) + pµJ2(mV ,M, δ) . (198)

Note that Jµ = 0 when pµ vanishes since the integrand is then odd in Lµ. By standard manipulations,
the integrals Ji can be expressed as

J1(mV ,M, δ) = −8[cε](1 + ε)
∂

∂m2
V

∫ ∞

0
dβ

∫ 1

0
dxβ2(1− x)

[

xm2
V + (1− x)M2 + β2 + 2βδ

]−2−ε
,

J2(mV ,M, δ) = 4[cε]
∂

∂m2
V

∫ ∞

0
dβ

∫ 1

0
dx(1 − x)

[

xm2
V + (1− x)M2 + β2 + 2βδ

]−1−ε
,

J(mV ,M, δ) = −4[cε]
∂

∂m2
V

∫ ∞

0
dβ

∫ 1

0
dx

[

xm2
V + (1− x)M2 + β2 + 2βδ

]−1−ε
, (199)

If we express J2 as

J2(mV ,M, δ) = 4
∂

∂m2
V

Ĵ(mV ,M, δ) , (200)

with

Ĵ(mV ,M, δ) = [cε]

∫ ∞

0
dβ

∫ 1

0
dx(1− x)

[

xm2
V + (1− x)M2 + β2 + 2βδ

]−1−ε
, (201)

then we find

Ĵ(M,mV , δ) = [cε]

∫ ∞

0
dβ

∫ 1

0
dxx

[

xm2
V + (1− x)M2 + β2 + 2βδ

]−1−ε
, (202)

and so

J(mV ,M, δ) = −4
∂

∂m2
V

[

Ĵ(mV ,M, δ) + Ĵ(M,mV , δ)
]

. (203)

Similarly, we may write

J1(mV ,M, δ) = −8[cε](1 + ε)
∂

∂m2
V

−1

(1 + ε)

∂

∂A2

∫ ∞

0
dβ

∫ 1

0
dx(1− x)

[

xm2
V + (1− x)M2 +A2β2 + 2βδ

]−1−ε
∣

∣

∣

∣

A2=1

= 8[cε]
∂

∂m2
V

∂

∂A2

1

A

∫ ∞

0
dβ′

∫ 1

0
dx(1 − x)

[

xm2
V + (1− x)M2 + β′2 + 2β′ δ

A

]−1−ε∣
∣

∣

∣

A2=1

= 8
∂

∂m2
V

1

2A

∂

∂A

1

A
Ĵ(mV ,M, δ/A)

∣

∣

A=1
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Weak-scale matching: on-shell renormalization

2.2 On-shell renormalization scheme for higgs-dark matter coupling

A consistent evaluation of amplitudes at the one-loop level demands renormalization of the Higgs-
dark matter vertices. Before embarking on the matching computations, let us study this vertex. We
define an extension of the on-shell renormalization scheme for the electroweak standard model by
expressing the vertex amplitude in terms of physical masses in the SM and dark sectors.

2.2.1 Counterterm lagrangian

We begin by studing the bino-higgsino system, and will later quote the analogous results for the wino-
higgsino system. Let us rewrite the bare lagrangian as the sum of renormalized and counterterm
contributions (we here denote the residual mass by M , and the residual mass counterterm by δM)

L = h̄bare
[
iv ·D −Mbare − fbare(H)

]
hbare

= h̄ [iv ·D −M − f(H)]h+ h̄ [δZhiv ·D − δM − δf(H)]h , (56)

where the bare quantities are given by

Mbare = diag(Mbare
1 ,Mbare

2 ,Mbare
2 ,Mbare

2 ,Mbare
2 ) ,

fbare =
abare1√

2




0 H† +HT i(HT −H†)

H +H∗
2 2

i(H −H∗) 2 2





+
abare2√

2




0 −i(HT −H†) HT +H†

−i(H −H∗) 2 2

H +H∗
2 2





≡ abare1 f1(H) + abare2 f2(H) (57)

and the symmetry-preserving counterterms are

Zh = 1 + δZh = diag(ZS , ZD 4) ,

M + δM = Z
1
2
h M

bareZ
1
2
h = diag[MS + δMS , (MD + δMD) 4] ,

f(H) + δf(H) = Z
1
2
h f

bare(H)Z
1
2
h = (a1 + δa1)f1(H

′) + (a2 + δa2)f2(H
′) , (58)

where we have introduced H ′ to absorb the renormalization of vwk:

Hbare = Z
1
2
HH = Z

1
2
H

(
1− δv

v

)
H ′ . (59)

We will fix δM1, δMψ, δa1 and δa2 by enforcing renormalization conditions on the mass matrix (two
point function). Three point functions involving the higgs interaction will then be determined.
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Fix counterterms by enforcing conditions on the residual 
mass matrix (two point functions).

2.2.2 Propagator corrections

Let us express the lagrangian in terms of mass eigenstate fields of the non-counterterm lagrangian.
In this basis the symmetric residual mass matrix is

δM =





δMψ | cos β
2 |

v
a(a2δa1 − a1δa2) −| sin β

2 |
v
a(a2δa1 − a1δa2) 0 0

· δMψ + 2 cos2 β
2 δ∆+ v

a(a1δa1 + a2δa2) sinβ −δ∆ sinβ + v
a(a1δa1 + a2δa2) cosβ 0 0

· · δMD + 2 sin2 β
2 δ∆− v

a(a1δa1 + a2δa2) sinβ 0 0

· · · δMψ 0

· · · · δMψ




,

(60)

where δ∆ = (δM1 − δMψ)/2. As before, sinβ = av/
√
a2v2 +∆2 and cosβ = ∆/

√
a2v2 +∆2, with

∆ = (M1 −Mψ)/2 and a =
√
a21 + a22.

W,Z h,φW ,φZ

Figure 9: One-loop corrections to two-point functions.

Let us compute the one-loop corrections to the amputated two-point function from virtual Z0,
W±, h, φZ and φW exchange, as illustrated by Fig. 9. Results are for Feynman-t’Hooft gauge,
expressed in terms of the basic integrals of Appendix A,

−i[Σ2(0)]11 = − g22
4c2W

cos2
β

2
I3(δ

(−)
0 ,mZ)−

g22
4c2W

sin2
β

2
I3(δ

(+)
0 ,mZ)−

g22
2
I(δ±,mW )

+ a2 cos2
β

2
I3(δ

(+)
0 ,mZ) + a2 sin2

β

2
I3(δ

(−)
0 ,mZ)

−i[Σ2(0)]22 = − g22
4c2W

sin2
β

2
I3(δ

(0)
0 ,mZ)−

g22
2
sin2

β

2
I3(δ±,mW ) + a2 sin2 βI3(δ

(+)
0 ,mh)

+ a2 cos2 βI3(δ
(−)
0 ,mh) + a2 cos2

β

2
I3(δ

(0)
0 ,mZ) + 2a2 cos2

β

2
I3(δ±,mW )

−i[Σ2(0)]33 = − g22
4c2W

cos2
β

2
I3(δ

(0)
0 ,mZ)−

g22
2
cos2

β

2
I3(δ±,mW ) + a2 sin2 βI3(δ

(−)
0 ,mh)

+ a2 cos2 βI3(δ
(+)
0 ,mh) + a2 sin2

β

2
I3(δ

(0)
0 ,mZ) + 2a2 sin2

β

2
I3(δ±,mW )

−i[Σ2(0)]44 = −i[Σ2(0)]55

= −e2I3(δ±,λ)−
g22
4c2W

(1− 2s2w)
2I3(δ±,mZ)−

g22
4
I3(δ

(0)
0 ,mW )

− g22
4
sin2

β

2
I3(δ

(+)
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(−)
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+ a2 sin2
β

2
I3(δ

(−)
0 ,mW ) (61)

Nonvanishing off-diagonal elements are

−i[Σ2(0)]23 = − g22
8c2W

sinβI3(δ
(0)
0 ,mZ)−

g22
4
sinβI3(δ±,mW ) + a2 sinβ cosβI3(δ

(+)
0 ,mh)

− a2 sinβ cosβI3(δ
(−)
0 ,mh)−

1

2
a2 sinβI3(δ

(0)
0 ,mZ)− a2 sinβI3(δ±,mW ) . (62)

2.2.3 Renormalization conditions

In terms of renormalziation constants δZb and δZψ for the bino and higgsino components in the
original basis,

δZ = diag(δZb, δZψ, δZψ, δZψ, δZψ) . (63)

If we rotate to a basis in which the renormalized mass is diagonal, we find

δZ =





δZψ 0 0 0 0

· 1
2(δZb + δZψ) +

1
2 cosβ(δZb − δZψ) −1

2(δZb − δZψ) sinβ 0 0

· · 1
2(δZb + δZψ)− 1

2 cosβ(δZb − δZψ) 0 0

· · · δZψ 0

· · · · δZψ




,

(64)

Due to the masslessness of the photon, the onshell renormalization factor for the electrically charged
state, δZψ, is infrared divergent. To avoid the associated complications, we may turn off δZψ,
corresponding to an additional overall renormalization of the fields with δZb = δZψ; this overall
renormalization will not impact the determination of physical masses or mass eigenstates. However,
we will need to compute and include additional wavefunction renormalization factors when computed
physical amplitudes. In the following we allow for arbitrary δZψ.

Let us fix δa1, δa2, δM1, δMψ and δZb by enforcing that the physical masses are given by the
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and that the lightest mass eigenstate is proportional to the vector (0, 0, 1, 0, 0):
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[δM ]23 +Re[Σ2(0)]23 = 0 . (66)

Note that the presence of δZb "= δZψ is required to maintain the orientation of the lightest mass
eigenstate under renormalization. We are using

δ(−)
0 = 0 , δ(+)

0 =
2av

sinβ
, δ(0)0 = δ± = av tan

β

2
. (67)

18

+ a2 sin2
β

2
I3(δ

(−)
0 ,mW ) (61)

Nonvanishing off-diagonal elements are

−i[Σ2(0)]23 = − g22
8c2W

sinβI3(δ
(0)
0 ,mZ)−

g22
4
sinβI3(δ±,mW ) + a2 sinβ cosβI3(δ

(+)
0 ,mh)

− a2 sinβ cosβI3(δ
(−)
0 ,mh)−

1

2
a2 sinβI3(δ

(0)
0 ,mZ)− a2 sinβI3(δ±,mW ) . (62)

2.2.3 Renormalization conditions

In terms of renormalziation constants δZb and δZψ for the bino and higgsino components in the
original basis,

δZ = diag(δZb, δZψ, δZψ, δZψ, δZψ) . (63)

If we rotate to a basis in which the renormalized mass is diagonal, we find

δZ =





δZψ 0 0 0 0

· 1
2(δZb + δZψ) +

1
2 cosβ(δZb − δZψ) −1

2(δZb − δZψ) sinβ 0 0

· · 1
2(δZb + δZψ)− 1

2 cosβ(δZb − δZψ) 0 0

· · · δZψ 0

· · · · δZψ




,

(64)

Due to the masslessness of the photon, the onshell renormalization factor for the electrically charged
state, δZψ, is infrared divergent. To avoid the associated complications, we may turn off δZψ,
corresponding to an additional overall renormalization of the fields with δZb = δZψ; this overall
renormalization will not impact the determination of physical masses or mass eigenstates. However,
we will need to compute and include additional wavefunction renormalization factors when computed
physical amplitudes. In the following we allow for arbitrary δZψ.

Let us fix δa1, δa2, δM1, δMψ and δZb by enforcing that the physical masses are given by the
renormalized parameters of the lagrangian:

[δM ]22 +Re[Σ2(δ
(+)
0 )]22 − δ(+)

0 [δZ]22 = 0 ,

[δM ]33 +Re[Σ2(0)]33 = 0 ,

[δM ]11 +Re[Σ2(δ±)]11 − δ(0)0 [δZ]11 = 0 , (65)

and that the lightest mass eigenstate is proportional to the vector (0, 0, 1, 0, 0):

[δM ]13 +Re[Σ2(0)]13 = 0 ,

[δM ]23 +Re[Σ2(0)]23 = 0 . (66)

Note that the presence of δZb "= δZψ is required to maintain the orientation of the lightest mass
eigenstate under renormalization. We are using

δ(−)
0 = 0 , δ(+)

0 =
2av

sinβ
, δ(0)0 = δ± = av tan

β

2
. (67)

18

+ a2I3(δ
(−)
0 ,mW ) + a2 cos2

β

2
I3(δ

(0)
0 ,mW ) + a2 sin2 βI3(δ

(+)
± ,mh) + a2 cos2 βI3(δ

(−)
± ,mh) ,

−i[Σ2(0)]45 = −i[Σ2(0)]67

= − g22
4c2W

sinβ(c2W − 1

2
sin2

β

2
)I3(δ

(+)
± ,mZ) +

g22
4c2W

sinβ(c2W − 1

2
cos2

β

2
)I3(δ

(−)
± ,mZ)−

g22
8
sinβI3(δ

(0)
0 ,mW )

+
g22
8
sinβ(1 + cos2

β

2
)I3(δ

(+)
0 ,mW ) +

g22
8
sinβ(1 + sin2

β

2
)I3(δ

(−)
0 ,mW )− a2

2
sinβI3(δ

(0)
0 ,mW )

+ a2 cosβ sinβI3(δ
(+)
± ,mh)− a2 cosβ sinβI3(δ

(−)
± ,mh) ,

−i[Σ2(0)]55 = −i[Σ2(0)]77

= −e2I3(δ
(−)
± ,λ)

− g22
16c2W

sin2 βI3(δ
(+)
± ,mZ)−

g22
c2W

(c2W − 1

2
cos2

β

2
)2I3(δ

(−)
± ,mZ)−

g22
4
cos2

β

2
I3(δ

(0)
0 ,mW )

− g22
16

sin2 βI3(δ
(+)
0 ,mW )− g22

4
(1 + sin2

β

2
)2I3(δ

(−)
0 ,mW ) + a2I3(δ

(+)
± ,mZ)

+ a2I3(δ
(+)
0 ,mW ) + a2 sin2

β

2
I3(δ

(0)
0 ,mW ) + a2 cos2 βI3(δ

(+)
± ,mh) + a2 sin2 βI3(δ

(−)
± ,mh) .

(76)

Let us enforce the renormalization conditions in the neutral sector,
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0 [δZ]22 = 0 ,

[δM ]33 +Re[Σ2(0)]33 = 0 , (77)

as well as the vanishing of off-diagonal elements,

[δM ]13 +Re[Σ2(0)]13 = 0 ,

[δM ]23 +Re[Σ2(0)]23 = 0 . (78)

The remainder of the renormalization program proceeds as for the bino-higgsino system.

2.3 Quark matching coefficients: one-boson exchange

h

Figure 10: Matching condition for quark operators from one-boson exchange.

Having determined the free parameters in the counterterm lagrangian, let us proceed to compute
the matching coefficients from higgs boson exchange.
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∼ δv + δZ + δκ + . . .

Three point function will be fixed (and finite).
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Weak scale matching: subleading class of diagrams

We neglect contributions from loop corrections 
to SM Higgs couplings:
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Numerical impact on cross sections of 
O(1-10%) is generous.
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spin-2 matrix 
elements depend 
on PDFs (check)

- Resums logs αs(µ0) log
mt

µ0

- Theoretical uncertainty

Standard Model anatomy of direct detection

µc

µb

µt

µ0

spin-0 matrix 
elements defined in 
3-flavor theory

ci(µt)

ci(µ0)
Generic component, relevant to collider 

constraints on contact interactions

(to do)



Running
d

d log µ
O(S)

i = −
∑

j

γ(S)
ij Oj

γ̂(0) =
αs

4π





0 0
. . .

...
0 0

32 · · · 32 −2β0




+ . . .

γ̂(2) =
αs

4π





64
9 − 4

3
. . .

...
64
9 − 4

3

− 64
9 · · · −64

9
4nf

3




+ . . .

Tarrach [82]; Grinstein, Randall [89]; Vogt, Moch, Vermaseren [04]; 
Ovrut, Schnitzer [82]; Inami, Kubota, Okada [83], Chetyrkin, 
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QCD module: technology

Solution to RG equations

+ = c1 + . . .

Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an effective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on φv or involving γ5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then

Lφ0,SM =
1

m3
W

φ∗
vφv

{∑

q

[
c(0)1q O

(0)
1q + c(2)1q vµvνO

(2)µν
1q

]
+ c(0)2 O(0)

2 + c(2)2 vµvνO
(2)µν
2

}
+ . . . , (19)

where we have chosen QCD operators of definite spin,

O(0)
1q = mq q̄q , O(0)

2 = (GA
µν)

2 ,

O(2)µν
1q = q̄

(
γ{µiDν} − 1

d
gµνiD/

)
q , O(2)µν

2 = −GAµλGAν
λ +

1

d
gµν(GA

αβ)
2 . (20)

Here A{µBν} ≡ (AµBν + AνBµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 − 2ε the spacetime dimension. We use the background field method
for gluons in the effective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coefficients c(S)2 through O(αs) and c(S)1q through O(α0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ∼ mt ∼ mW ∼ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
[
− 1

x2
h

]
, c(0)1D(µt) = C

[
− 1

x2
h

− |VtD|2
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4(1 + xt)3

]
,

c(2)1U(µt) = C
[
2

3

]
, c(2)1D(µt) = C

[
2

3
− |VtD|2

xt(3 + 6xt + 2x2
t )

3(1 + xt)3

]
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [πα2
2(µt)][J(J +

1)/2], xh ≡ mh/mW and xt ≡ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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Spin 0:

Spin 2: 

c(0)1 (µ) = c(0)1 (µt)− 2[γm(µ)− γm(µt)]
c(0)2 (µt)
β
g [αs(µt)]

5.1 Anomalous dimensions

The spin S = 0 and spin S = 2 operators mix amongst themselves, with
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where β = dg/d log µ ≈ −β0αs/4π, γm = d logmq/d log µ ≈ −8αs/4π, γ′
m ≡ g∂γm/∂g,

(β/g)′ ≡ g∂(β/g)/∂g, and β0 = 11 − 2
3nf . It is straightforward to include subleading terms

for γ̂(0) [11, 12] and γ̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ∼ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are

c(0)2 (µb) = c̃(0)2 (µb)
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4ã

3
log
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c̃(2)1b (µb) +O(ã2),

c(2)1q (µb) = c̃(2)1q (µb) +O(ã), (25)

where q = u, d, s, c and ã = αs(µb, nf = 5)/4π. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of αs in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coefficients in the nf = 4 theory to
the scale µ = µc ∼ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ∼ 1GeV
independent of heavy quark masses.
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where β = dg/d log µ ≈ −β0αs/4π, γm = d logmq/d log µ ≈ −8αs/4π, γ′
m ≡ g∂γm/∂g,

(β/g)′ ≡ g∂(β/g)/∂g, and β0 = 11 − 2
3nf . It is straightforward to include subleading terms

for γ̂(0) [11, 12] and γ̂(2) [13, 14].
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(
11 +

4

3
log

mb

µb

)]
+O(ã3),
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where q = u, d, s, c and ã = αs(µb, nf = 5)/4π. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of αs in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coefficients in the nf = 4 theory to
the scale µ = µc ∼ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ∼ 1GeV
independent of heavy quark masses.
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As check, can evaluate spin-2 matrix elements at high 
scale (spin-0 and spin-2 decoupled)
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where β = dg/d log µ ≈ −β0αs/4π, γm = d logmq/d log µ ≈ −8αs/4π, γ′
m ≡ g∂γm/∂g,

(β/g)′ ≡ g∂(β/g)/∂g, and β0 = 11 − 2
3nf . It is straightforward to include subleading terms

for γ̂(0) [11, 12] and γ̂(2) [13, 14].

5.2 Integrating out heavy quarks
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where q = u, d, s, c and ã = αs(µb, nf = 5)/4π. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of αs in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coefficients in the nf = 4 theory to
the scale µ = µc ∼ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ∼ 1GeV
independent of heavy quark masses.
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Solution to RG equations
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Figure 1: Matching condition for quark operators. Double lines denote heavy scalars, zigzag
lines denote W bosons, dashed lines denote Higgs bosons, single lines with arrows denote
quarks, and the solid square denotes an effective theory vertex. Diagrams with crossed W
lines are not displayed.

with derivatives acting on φv or involving γ5, since these lead to spin-dependent interactions
that are suppressed for low-velocity scattering. The basis of operators is then
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Here A{µBν} ≡ (AµBν + AνBµ)/2 denotes symmetrization. We employ dimensional regu-
larization with d = 4 − 2ε the spacetime dimension. We use the background field method
for gluons in the effective theory thus ignoring gauge-variant operators, and assume that ap-
propriate field redefinitions are employed to eliminate operators that vanish by leading order
equations of motion. The matrix elements of the gluonic operators, O(S)

2 , are numerically
large, representing a substantial contribution of gluons to the energy and momentum of the
nucleon. To account for the leading contributions from both quark and gluon operators, we
compute the coefficients c(S)2 through O(αs) and c(S)1q through O(α0

s).

4 Weak scale matching

The matching conditions for quark operators in the nf = 5 flavor theory at renormalization
scale µ = µt ∼ mt ∼ mW ∼ mh are obtained from the diagrams in Fig. (1):

c(0)1U(µt) = C
[
− 1

x2
h

]
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]
,
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]
, c(2)1D(µt) = C
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t )
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]
, (21)

where subscript U denotes u or c and subscript D denotes d, s or b. Here C = [πα2
2(µt)][J(J +

1)/2], xh ≡ mh/mW and xt ≡ mt/mW . We ignore corrections of order mq/mW for q =
u, d, s, c, b, and have used CKM unitarity to simplify the results.
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where β = dg/d log µ ≈ −β0αs/4π, γm = d logmq/d log µ ≈ −8αs/4π, γ′
m ≡ g∂γm/∂g,

(β/g)′ ≡ g∂(β/g)/∂g, and β0 = 11 − 2
3nf . It is straightforward to include subleading terms

for γ̂(0) [11, 12] and γ̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ∼ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are
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where q = u, d, s, c and ã = αs(µb, nf = 5)/4π. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of αs in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coefficients in the nf = 4 theory to
the scale µ = µc ∼ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ∼ 1GeV
independent of heavy quark masses.
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where β = dg/d log µ ≈ −β0αs/4π, γm = d logmq/d log µ ≈ −8αs/4π, γ′
m ≡ g∂γm/∂g,

(β/g)′ ≡ g∂(β/g)/∂g, and β0 = 11 − 2
3nf . It is straightforward to include subleading terms

for γ̂(0) [11, 12] and γ̂(2) [13, 14].
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where q = u, d, s, c and ã = αs(µb, nf = 5)/4π. Quantities without (with) tilde refer to the
nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of αs in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coefficients in the nf = 4 theory to
the scale µ = µc ∼ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ∼ 1GeV
independent of heavy quark masses.
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for γ̂(0) [11, 12] and γ̂(2) [13, 14].

5.2 Integrating out heavy quarks

At the scale µ = µb ∼ mb, we match onto an nf = 4 theory containing u, d, s, c quarks. The
matching equations are

c(0)2 (µb) = c̃(0)2 (µb)

(
1 +

4ã
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nf = 4 (nf = 5) theory. The scheme dependence for heavy quark masses enters at higher order.
For definiteness we use pole masses for mb and mc, with values taken from [15]. Following

our power counting scheme, we consider one less order of αs in the matching for c(S)1q relative

to c(S)2 . For later use in the numerical analysis, we have included NLO QCD corrections in
the spin-0 matching [16, 17]. Similar to above, we evolve coefficients in the nf = 4 theory to
the scale µ = µc ∼ mc. Finally, we match onto nf = 3 and evolve to a low scale µ0 ∼ 1GeV
independent of heavy quark masses.
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There is no dependence of c(0)
2 or c(2)

2 on CKM matrix elements in the limit of vanishing
d, s, b quark masses. The renormalized coefficients are computed in the MS scheme. We have
employed Fock-Schwinger (x · A = 0) gauge [10] to compute the full-theory amplitudes for
gluonic operators in Fig. 2. The effective theory subtractions are efficiently performed in
a scheme with massless light quarks, using dimensional regularization as infrared regulator.
We have verified that the same results are obtained using finite masses and taking the limit
mq/mW → 0. Details of this computation will be presented elsewhere.

5 RG evolution to hadronic scales

To account for perturbative corrections involving large logarithms, e.g. αs(µ0) log mt/µ0, we
employ renormalization group evolution to sum leading logarithms to all orders.
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(nf = 5)

familiar from h to gg
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QCD module: technology

(to do)
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threshold matching: NLO

RG: NLO, NLO

threshold matching: NLO

RG: NNNLO, NNNLO

mN = (1 − γm)
∑

q

〈N |mq q̄q|N〉 +
β

2g
〈N |(Ga

µν)2|N〉

µc

µb

µt weak scale matching: LO (largest uncertainty)

RG: NLO, NLO

µ0 NNNLO in the spin-0 gluon matrix element

pay close attention 
to charm scale 

QCD module: higher-order         corrections αs(µ)

}
(under control; fix this scale)



Matrix elements}

σ(SM) +O(mW /M, mb/Mw,Λ2
QCD/m2

c)

mN



Impact of perturbative QCD
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Hadronic uncertainties
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lattice baryon spectroscopy

total spin-0 and 
spin-2 amplitudes 
have opposite signs
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FIG. 8: Comparison and average of lattice QCD calculations of fs as described in the text. Only
values that have been extrapolated to the physical quark masses are used. Results that quote
ms〈N |s̄s|N〉 are normalized by mN = 938.9 MeV to convert to fs. The quoted uncertainties are
taken as the statistical and systematic uncertainties added in quadrature from a given reference.
nf = 2+ 1 indicates a dynamical strange quark as well as up and down. SU(3) is used to indicate
results that rely heavily on SU(3) baryon χPT. Some results are excluded for various reasons but
displayed to demonstrate their consistency: [29] was updated in [30], the nf = 2 results [22, 24]
were not averaged with the nf = 2 + 1, the results in [25] were preliminary and not extrapolated
to the physical pion mass, the results in [26, 36] are preliminary and only exist in a conference
proceedings. All excluded results are presented as quoted in the literature, with no attempt to
perform chiral extrapolations

For the scalar strange content of the nucleon, the current state of results is such that a
simple weighted average of good (green star) results can not be performed in a meaningful
way. As can be seen in Fig. 8, there is good consistency between most of the results.
There are not a large number of orange circle results, so we chose to include all results in
the average. Moreover, we believe despite their red-square assignment, these results offer
valuable information which should not be ignored at this time.

A simple weighted average, using the quoted uncertainties as the inverse weights, pro-
duces an unbelievably small final uncertainty. This also ignores the fact that systematic
uncertainties are typically non-Gaussian, and in the case of lattice QCD calculations, not
cleanly separable from the statistical uncertainties. Moreover, it does not account for the
quality of the results, judged using the rubric of the FLAG working group. In an attempt
to include all these issues, the following ad hoc procedure is used to perform a weighted
average of all the results (presented in Figure 8):

i) for each of the Nlatt = 11 results, fi ± σ±
i , an independent random sample is generated

with a sample size of Ndist = 104, drawn from a uniform distribution between the quoted

17

Junnarkar, Walker-
Loud [1301.1114]



Pure states: parameter-free cross sections
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Pure states: checks
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Pure states: spin-2 gluon contributions
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spin-2 amplitude

evaluation scale
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Impact of charm scalar matrix element determination
evaluate in nf=4 theory

perturbative QCD estimate: Junnarkar, Walker-Loud [1301.1114]
lattice: Freeman et al. [1204.3866], Gong et al. [1304.1194]
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Mixed-state cross sections
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Pure states generic
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other searches

(to do)

SUSY fixes kappa: 

κ ≤ tan θW /2
κ ≤ 1/2

b-h:
w-h:

(to do)

Cancellations generic
interference important
robust?(to do)



Conclusions
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Develop heavy particle effective theory and 
calculational techniques to evaluate the 
universal cross section.

A simple target to guide future direct searches.

Standard Model anatomy: Higgs mass, lattice, 
QCD effects, (cancellations). charm

generic

THANKS!



φv(x)→W (B, iD)φv(x′) = BB−1W (B, iD)φv(x′)

v → v = BB−1v

v → B−1v = v + q/Mφv → B−1W (B, iD)φv

What is RPI? 
Identities lead to an equivalent formulation of boosts

The RPI transformation
- equivalent for free fields, but not in interacting case
- takes the field outside of assumed representation space

- yields an incorrect coefficient relation for cX4

32cX4 = 4c2
F − 6cF Z + 4ZcD − 2cA2 − Z2

/vψv != ψv

36
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e.g. Triplet mass splitting due to EWSB

universal in the class

3.1 Mass correction from electroweak symmetry breaking

We may evaluate the heavy scalar self energy to obtain mass corrections,

−iΣ(p) =
W

p
+

Z
+

γ

+ . . . . (14)

The shift in mass due to electroweak symmetry breaking appears as a nonvanishing value of
Σ(p) at v ·p = 0. We find at leading order in the 1/M expansion, and first order in perturbation
theory,

δM = α2mW

[
−1

2
J2 + sin2 θW

2
J2

3

]
. (15)

In particular, with Q = J3 + Y = J3 for Y = 0, the mass of each charged state is lifted
proportional to its squared charge relative to the neutral component,

M(Q) −M(Q=0) = α2Q
2mW sin2 θW

2
+O(1/M) ≈ (170 MeV)Q2 . (16)

Subleading corrections can be similarly evaluated in the effective theory. Since no additional
operators appear at O(1/M0), the result (16) is model independent.4

3.2 Operator basis

The effective theory after electroweak symmetry breaking will include: the heavy scalar QED
theory for each of the electric charge eigenstates, with mass determined as in (15);5 the
Standard Model lagrangian with W,Z, h, t integrated out; and interactions,

L = Lφ0 + LSM + Lφ0,SM + . . . , (17)

where the ellipsis denotes terms containing electrically charged heavy scalars. For the electri-
cally neutral scalar,

Lφ0 = φ∗v,Q=0

{
iv · ∂ − ∂2

⊥
2M(Q=0)

+O(1/m3
W )

}
φv,Q=0 . (18)

Note that enforcing the reality condition (7) implies the vanishing of cD (= cM).
Interactions with Standard Model fields begin at order 1/m3

W . We restrict attention to
quark and gluon operators (neglecting lepton and photon operators) and again focus on the
neutral φv,Q=0 component, dropping the Q = 0 subscript in the following. Mixing with charged
scalars will become relevant at order 1/m4

W in nuclear scattering computations; similarly, we
restrict attention to flavor-singlet quark bilinears, since matrix elements of flavor-changing
bilinears are suppressed by additional weak coupling factors. Finally, we neglect operators

4The mass splitting (16) appears in limits of particular models, e.g. [1, 7, 8].
5We define the pole mass to include the contributions induced by electroweak symmetry breaking, as

opposed to introducing residual mass terms for different charge eigenstates [9].

5

M(Q) −M(Q=0) = α2Q
2mW sin2 θW

2
+O(1/M) ≈ (170 MeV )Q2


